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Abstract

The mechanical response of nanostructures, or materials with characteristic
features at the nanoscale, differs from their coarser counterparts. An important
physical reason for this size-dependent phenomenology is that surface or inter-
face properties are different than those of the bulk material and acquire significant
prominence due to an increased surface-to-volume ratio at the nanoscale. In
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this chapter, we provide an introductory tutorial on the continuum approach
to incorporate the effect of surface energy, stress, and elasticity and address
the size-dependent elastic response at the nanoscale. We present some simple
illustrative examples that underscore both the physics underpinning the capillary
phenomenon in solids as well as a guide to the use of the continuum theory of
surface energy.

1 Introduction

In a manner of speaking, a free surface or an interface is a “defect.” We will use
the word “surface” to imply both a free surface as well as an interface separating
two materials. It represents a drastic interruption in the symmetry of the material –
much like the more conventionally known defects such as dislocations. Imagine
the atoms on a free surface. They have a different coordination number, charge
distribution, possible dangling bonds, and many other attributes that distinguish
them from atoms further away in the bulk of the material (Ibach 1997; Cammarata
2009). It is therefore hardly surprising that the surface of a material should have
mechanical (or in general other physical) properties that differ from the bulk of the
material. In other words, as much as conventional defects (such as dislocations)
impact the physical response of materials, so do surfaces. However, for coarse-sized
structures, the surface-to-volume ratio is negligible, and so even though surfaces do
have different properties, they hardly matter in terms of the overall response of the
structure. This situation changes dramatically at the nanoscale. As a rather extreme
example, 2 nm cube of Copper has nearly 50% of its atoms on the surface. What
length scale is “small enough” for surface effects to become noticeable arguably
depends on the strength of the surface properties. For hard crystalline materials, this
length scale is certainly below 50 nm and often only of significant importance below
10 nm (Miller and Shenoy 2000). Ultra-soft materials (with elastic modulus in the
1–5 kPa range) are an interesting exception where even at micron scale, surface
energy-related size effects may be observable (Style et al. 2013).

In a continuum field setting, the role of surfaces may be captured by assuming
that they are zero-thickness entities and possess a nontrivial excess energy that is
distinct from the bulk. The surface energy concept for solids encompasses the fact
that surfaces appear to possess a residual “surface tension”-like effect known as
surface stress and also an elastic response, termed “surface or superficial elasticity.”
In the context of fluids, “capillarity” has long been studied, and the concept of
surface tension is well-known (see Fig. 1). The situation for solid surfaces is
somewhat more subtle than fluids in many ways since deformation is a rather
important contributor to surface energy – which is not the case for simple liquids.
For a simple liquid, surface energy, the so-called surface stress and surface tension
are the same concept. This is not the case for solid surfaces. For further details, see
a recent review article by Style et al. (2017). Given the existence of an extensive
body of work on this subject, we avoid a detailed literature review and simply point
to the following overview articles that the reader may consult (and the references
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Gravity

Surface Tension Surface Tension
Capillary Attraction

Fig. 1 The ramifications of surface energy – in the form of surface tension – are well-known from
our daily lives and are illustrated in this schematic. Surface tension forces, for instance, assist in
overcoming gravity and enable the floatation of a ball. The ability of a water spider to walk on the
water surface is another example. Also shown is a schematic of a capillary tube, frequently used
by biologists and chemists, to highlight how surface tension causes water to be drawn up the tube

therein): (Javili et al. 2013; Duan et al. 2009; Wang et al. 2010, 2011; Li and Wang
2008; Cammarata 2009; Ibach 1997; Müller and Saúl 2004). We will primarily
follow the approach pioneered by Gurtin, Murdoch, Fried, and Huang (Gurtin and
Murdoch 1975b; Biria et al. 2013; Huang and Sun 2007) and attempt to present
a simplified tutorial on the continuum theory for surface energy. For the sake of
brevity and with the stipulation that this chapter is merely meant to be a first step to
understand surface elasticity, we avoid several complexities and subtleties that exist
on this topic such as choice of reference state in the development of the continuum
theory (Huang and Wang 2013; Javili et al. 2017), consistent linearization from a
nonlinear framework and differences in the various linearized theories (Javili et al.
2017; Liu et al. 2017), curvature dependence of surface energy (Steigmann and
Ogden 1997, 1999; Chhapadia et al. 2011; Fried and Todres 2005), and generalized
interface models that may allow greater degree of freedom than just a “no slip”
surface c.f. (Gurtin et al. 1998; Chatzigeorgiou et al. 2017). We also present three
simple case studies or illustrative examples that both highlight the use of the theory
and the physical consequence of surface energy effects. While the focus of the
chapter is primarily on mechanics and, specifically, elasticity, the framework used
in this chapter can be used as a starting point for applications outside mechanics.
Indeed, surface energy effects are of significant interest to a variety of disciplines
and permeate topics as diverse as fluid mechanics (de Gennes et al. 2004), sensors
and resonators (Park 2008), catalysis (Müller and Saúl 2004; Haiss 2001; Pala and
Liu 2004), self-assembly (Suo and Lu 2000), phase transformations (Fischer et al.
2008), biology (Liu et al. 2017), and composites (Duan et al. 2005), among others.
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2 Preliminary Concepts

2.1 The Need for Surface Tensors

In the study of mechanics of surfaces, we have to contend with tensor fields that
“live” on a surface. For example, we will need to define the strain field experienced
by a surface. The general machinery of curvilinear tensor calculus then becomes
necessary to describe surface mechanics which (at least for our taste) becomes
somewhat cumbersome. A direct notation was developed by Gurtin and Murdoch
(1975b) which we (prefer and) briefly motivate in this section.

To establish the basic idea, for now, consider just a flat surface shown in Fig. 2
with outward unit normal n = e3. On physical grounds, assuming that there is no
“slip” between the surface and the underlying bulk material, the surface strain is
simply the strain field of the bulk material at the spatial position of the surface. In
addition, intuitively, the normal components of the strain tensor ought not to exist
for the zero-thickness surface, i.e., Es(x) = Ebulk(x) projected on the tangent
plane of the surface where x is on the surface. To make this idea more concrete,
assume a body occupies a domain Ω0 experiencing a strain E : Ω0 → R3×3

sym . We
then expect the surface strain to be simply

Es :=
⎡
⎣

E11 E12 0
E21 E22 0

0 0 0

⎤
⎦ . (1)

Our intuition works well for flat surfaces, but we must generalize the mathe-
matical framework to contend with general curved surfaces. This brings to fore
the question of how we define surface tensors on arbitrarily curved surfaces. To
understand this, we define next the surface projection tensor. More details on the
mathematical preliminaries can be found in the work of Gurtin, Murdoch, and co-
workers (Gurtin and Murdoch 1975b, 1978; Gurtin et al. 1998).

W0

Undeformed body Deformed body

W

e1

e3

e2

E (x)

Fig. 2 Schematic of the deformation of a body that occupies the domain Ω0. The upper surface is
artificially separated from the underlying bulk to highlight the surface deformation E(x). Cartesian
coordinates with a positively oriented orthonormal basis {e1, e2, e3} are shown here and the
outward unit normal to the upper surface is n(x) = e3
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2.1.1 Surface Projection Tensor
As discussed in the preceding section, we will often need to project second-order
tensors on to a curved surface. To that end, the surface projection tensor for the
tangent surface with outward unit normal n(x) is defined as

P(x) = I − n(x) ⊗ n(x). (2)

Here I is the second-order identity tensor, and “⊗” denotes the tensor product (or
the dyadic product).

If we choose the flat upper surface shown in Fig. 2 as an example, the normal
to the upper surface is n = e3 in Cartesian coordinates with a positively oriented
orthonormal basis {e1, e2, e3}. With the definition in (2), the projection tensor on
the flat upper surface admits the form

P(x) = I − e3 ⊗ e3 = e1 ⊗ e1 + e2 ⊗ e2 :=
⎡
⎣

1 0 0
0 1 0
0 0 0

⎤
⎦

{e1,e2,e3}
. (3a)

Another example is the projection tensor on a spherical surface with radius R

that can be represented by S = {x ∈ R
3 : x ·x −R2 = 0}. The outward unit normal

to this surface is n = er in spherical coordinates {r, θ, φ} with basis {er , eθ , eφ}.
From the definition of the projection tensor in (2), we have

P(x) = I − er ⊗ er = eθ ⊗ eθ + eφ ⊗ eφ :=
⎡
⎣

0 0 0
0 1 0
0 0 1

⎤
⎦

{er ,eθ ,eφ}
. (3b)

The projection tensor in (3b) can also be easily expressed in the Cartesian
coordinates by using the identities eθ = cos θ cos φe1 + cos θ sin φe2 − sin θe3
and eφ = − sin φe1 + cos φe2 as well as the tensor product between two vectors.

2.1.2 Surface Vector and Tensor Fields
Let v(x) be a smooth vector field and T (x) be a smooth second-order tensor. Their
projections vs(x) and T s(x) on a smooth surface with outward unit normal n(x),
respectively, are

vs = Pv and T s = PT P, (4)

where the projection tensor P is defined in (2).
For example, consider a vector field v = viei and a second-order tensor field

T = Tijei ⊗ ej in Cartesian coordinates with a positively oriented orthonormal
basis {e1, e2, e3}. Take the upper surface with outward unit normal n(x) = e3. The
projection tensor in (2) becomes P(x) = I − e3 ⊗ e3 = e1 ⊗ e1 + e2 ⊗ e2. Thus,
with (4), the projected vector and tensor on the upper surface, respectively, are
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vs = Pv = (e1 ⊗ e1 + e2 ⊗ e2)viei = v1e1 + v2e2 (5a)

and

Ts = PT P = (e1 ⊗ e1 + e2 ⊗ e2) · Tijei ⊗ ej · (e1 ⊗ e1 + e2 ⊗ e2)

= T11e1 ⊗ e1 + T12e1 ⊗ e2 + T21e2 ⊗ e1 + T22e2 ⊗ e2

: =
⎡
⎣

T11 T12 0
T21 T22 0
0 0 0

⎤
⎦ .

(5b)

Equation (5b) makes it evident how the surface strain in (1), written earlier by
intuition, may be formally derived from the bulk strain field.

By (4)2, the projection of the identity tensor I on the surface with outward unit
normal n(x) can be obtained as

I = PIP, (6)

which is called the surface identity tensor on the surface and is often used in the
context of second-order tensors.

2.2 Differentiation and Integration on a Surface

2.2.1 Surface Gradient, Normal Derivative, and Curvature Tensor
Consider a smooth scalar field φ(x) : Ω0 → R and a smooth vector field
v(x) : Ω0 → R

3 over the domain Ω0. By using the gradient operator ∇, their
(three-dimensional) gradients are represented by ∇φ(x) and ∇v(x), respectively.
In contrast, the surface gradient operator on a surface with unit normal n is denoted
by ∇s , and together with the projection tensor P in (2), the surface gradients of the
two fields can be represented by (Gurtin et al. 1998)

∇sφ = P∇φ and ∇sv = (∇v)P. (7)

We now define the normal derivative of fields on a surface with outward unit
normal n. Following the scalar field φ and the vector field v in (7), we define their
normal derivatives as

∂φ

∂n
= n · ∇φ and

∂v

∂n
= (∇v)n. (8)

The normal derivative
∂φ

∂n
can be regarded as the rate of change of φ in the

direction n. By (2) and (8), the surface derivatives (7) can be recast as

∇sφ = ∇φ −
(∂φ

∂n

)
n and ∇sv = ∇v −

(∂v

∂n

)
⊗ n. (9)
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Equation (9) represents the relation between the surface gradient, the gradient,
and the normal derivative. We note that Eqs. (7) and (9) are two (alternative but
equivalent) ways to represent the surface gradient.

The curvature tensor of a surface with outward unit normal n is then defined as
(Gurtin et al. 1998)

L = −∇sn, (10)

which is symmetric and hence tangential, that is, L = L
T and L

T n = 0.
In order to enhance the understanding of these definitions, we now consider some

simple examples by referring to Fig. 2. In Cartesian coordinates, the gradients of
the scalar and vector fields, respectively, are ∇φ = ∂φ

∂xi
ei and ∇v = ∂v

∂xj
⊗ ej =

∂vi

∂xj
ei ⊗ ej . The outward unit normal to the flat upper surface is n = e3, and then its

projection tensor is P = e1 ⊗ e1 + e2 ⊗ e2 which was mentioned in (3a).
By (7) and the Kronecker delta, the surface gradients on the flat surface in Fig. 2

are

∇sφ = (e1 ⊗ e1 + e2 ⊗ e2)
∂φ

∂xi

ei = ∂φ

∂x1
e1 + ∂φ

∂x2
e2 (11a)

and

∇sv =
(

∂v

∂xj

⊗ ej

)
(e1 ⊗ e1 + e2 ⊗ e2) = ∂v

∂x1
⊗ e1 + ∂v

∂x2
⊗ e2. (11b)

By (8), the normal derivatives on the surface in the example are

∂φ

∂n
= e3 · ∂φ

∂xi

ei = ∂φ

∂x3
and

∂v

∂n
=

(
∂v

∂xj

⊗ ej

)
e3 = ∂v

∂x3
. (12)

Using (9), together with (12), we can obtain the same surface gradients as (11).
Similarly, using (10), together with (11b), we find the obvious answer that the
curvature tensor L of the flat upper surface in Fig. 2 is

L = −∇se3 = −∂e3

∂x1
⊗ e1 − ∂e3

∂x2
⊗ e2 = 0. (13)

As another illustration, we may consider the curvature tensor for a spherical
surface of radius R. In spherical coordinates {r, θ, φ} with orthonormal basis
{er , eθ , eφ}, the outward unit normal to the spherical surface is n = er , whose
gradient is ∇er = r−1(eθ ⊗ eθ + eφ ⊗ eφ). By (7) and (10), the curvature tensor in
this example is

L = −∇ser = −(∇er )P = − 1

R
(eθ ⊗ eθ + eφ ⊗ eφ), (14)

which is symmetric L = L
T and tangential LT er = 0.
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2.2.2 Surface Divergence, Trace, and Mean Curvature
The surface divergences of a vector field v(x) and a tensor field T (x) are defined as
follows:

divsv = tr(∇sv) and a · divsT = divs(T
T a), (15)

where “tr”, here and henceforth, denotes the trace and a ∈ R
3 is an arbitrary

constant vector. An important identity related to the surface divergence operator
is

divs(T
T n) = n · divsT + T · ∇sn. (16)

For further useful surface identities, the reader is referred to the work (Gurtin and
Murdoch 1975b).

The mean curvature is then simply

κ = 1

2
tr(L) = −1

2
tr(∇sn) = −1

2
divsn. (17)

For the same example in Eq. (11b), the corresponding surface divergence is

divsv = tr(∇sv) = tr

(
(∂viei )

∂x1
⊗ e1 + ∂(viei )

∂x2
⊗ e2

)
= ∂v1

∂x1
+ ∂v2

∂x2
. (18)

Similarly, for a second-order tensor T = Tijei ⊗ ej , its surface gradient is a
vector, and its k-th component, by (15)2, can be represented by

(divsT )k = ek · divsT = divs(T
T ek) = ∂Tk1

∂x1
+ ∂Tk2

∂x2
, (19)

where the identity T T ek = Tkiei and the example result in (18) are used. Regarding
the examples of the curvature tensors (13) and (14), their mean curvatures are 0 and
−R−1, respectively.

2.2.3 Divergence Theorem for Surfaces
Consider a surface S0 ⊂ ∂Ω0 with a smooth boundary curve ∂S0. For a smooth
vector u that is tangential on the surface S0 and a smooth tensor field T , the
divergence theorem is defined by Gurtin and Murdoch (1975b) and Gurtin et al.
(1998)

∫
S0

divsu =
∫

∂S0

u · v,

∫
S0

divsT =
∫

∂S0

T v, (20)

where v is the outward unit normal to the boundary curve ∂S0.
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3 Theoretical Framework for Surface Mechanics

With the mathematical preliminaries necessary for surface mechanics described
earlier, we can now proceed in a rather standard manner to derive the pertinent
governing equations. The original theory by Gurtin and Murdoch (1975b) was
derived by employing stress as the primitive concept. We (following Huang and co-
workers Huang and Wang 2006; Huang and Sun 2007) favor a variational approach
where we take the surface energy as the primitive concept.

3.1 Kinematics

Assume a deformable solid that occupies the domain Ω0 in the reference configura-
tion shown in Fig. 3. The boundary of the domain is denoted by ∂Ω0, which can be
divided into two parts: the displacement boundary ∂Ωu

0 and the traction boundary
∂Ωt

0. Mathematically, ∂Ωu
0 ∪ ∂Ωt

0 = ∂Ω0 and ∂Ωu
0 ∩ ∂Ωt

0 = ∅.
A material point is denoted by x ∈ Ω0. Consider a smooth mapping y : Ω0 →

R
3, that is, y(x) = x + u(x). Here u is the displacement vector. The deformation

gradient is defined as F = ∇x. The displacement and traction boundary conditions
are

u = u0 on ∂Ωu
0 and t = t0 on ∂Ωt

0. (21)

Fig. 3 Schematic of a deformable body that occupies the domain Ω0 with the boundary ∂Ω0. The
material point is denoted by x ∈ Ω0, and the outward unit normal to ∂Ω0 is represented by n.
The displacement boundary is u = u0 while the traction boundary is t = t0. In particular, the
surface effect is shown on the surface S0 ⊂ ∂Ω0. On the boundary curve ∂S0 of the surface S0,
the outward unit normal to ∂S0 is denoted by v
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3.2 Energy Variation and Equations of Equilibrium

We explicitly assume that the surface or the interface does not “slip” from the rest
of the material. Gurtin et al. (1998) have dealt with the special case where interfaces
may not be coherent and admit jumps in displacements. We do not consider that
complexity here. The energy functional of the general system shown in Fig. 3 is
then:

F [u; x] =
∫

Ω0

Ψ (∇u) +
∫

S0

Γs(∇u) −
∫

∂Ωt
0

t0 · u, (22)

where Ψ is the strain energy function per unit volume of the bulk, Γs is the
surface energy function per unit area of the surface S0 ⊂ ∂Ω0, and t0 is the
dead load applied on the traction boundary ∂Ωt

0 in the reference configuration.
The reference configuration taken here is actually the initial configuration, which
is neither subjected to any body force nor tractions. We note that in the reference
configuration, there exists the surface stress, which is regarded as “residual.” The
residual stress field can be described according to the surface energy function Γs . To
further clarify the surface effects on the energy functional, Huang and Wang (2006,
2013) proposed an extra configuration, a “fictitious stress-free configuration.” For
further details on such subtleties, the reader is referred to their work.

We now invoke the principle of minimum energy to seek the equilibrium state of
the deformed body:

min{F [u] : u ∈ S }. (23)

Here the set S denotes the smooth function space over the domain Ω0, and the
displacement field must satisfy u = u0 on ∂Ωu

0 in (21)1.
If we assume the state u to be the minimizer of the energy functional in (22),

then by the principle of energy minimization (23), we have

F [u] ≤ F [u + εu1], (24)

where ε ∈ R and u + εu1 belongs to the set of all kinematically admissible
deformations in the neighborhood of the deformation u. We only consider small
perturbations, so the norm ‖εu1‖ � 1. By the displacement boundary (21)1, the
variation u1 satisfies

u1 = 0 on ∂Ωu
0 . (25)

The inequality (24) leads to the following first and second variation conditions

δF [u] = 0 and δ2F [u]≥0. (26)
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In this book chapter, we only limit our attention to the first variation that leads to
the equilibrium equations and the natural boundary conditions. The first variation is
written as

δF [u] := dF [u + εu1]
dε

∣∣∣∣
ε=0

. (27)

Using (27) and the chain rule, the first variation of (22) reads

δF [u] =
∫

Ω0

S · ∇u1 +
∫

S0

S · ∇u1 −
∫

∂Ωt
0

t0 · u1, (28)

where

S = ∂Ψ

∂∇u
and S = ∂Γs

∂∇u
. (29)

Here S in (29) is the first Piola-Kirchhoff surface stress tensor (Gurtin et al. 1998),
and S is the first Piola-Kirchhoff bulk stress tensor.

Employing the surface gradient of a vector in (9)2 as well as the property of the
surface tensor S, that is, Sn = 0, the integrand S · ∇u1 in (28) can be recast as

S · ∇u1 = S · ∇su1 + ∂u1

∂n
· Sn = S · ∇su1. (30)

In the work by Gurtin et al. (1998), they derived the identity Sn = 0 on the surface
S0 (see their Eq.(37)) by assuming an arbitrary function ∂u1

∂n
on the surface S0. Here

we obtain this identity through the definition of a surface tensor (4)2, that is, for an
arbitrary surface tensor T s = PT P, we have T sn = PT Pn = PT 0 = 0 since
Pn = (I − n ⊗ n)n = 0.

By the identity (16), we further have

S · ∇su1 = divs(S
T u1) − u1 · divsS. (31)

Thus, by (31) and the divergence theorem (20), the second integral in (28)
becomes

∫
S0

S · ∇u1 =
∫

S0

[
divs(S

T u1) − u1 · divsS

]
=

∫
∂S0

u1 · Sv −
∫

S0

u1 · divsS.

(32)
Similarly, by using the divergence theorem in volume, we obtain

∫
Ω0

S · ∇u1 =
∫

Ω0

[
div(ST u1) − u1 · divS

]
=

∫
∂Ω0

u1 · Sn −
∫

Ω0

u1 · divS.

(33)
Substituting (32) and (33) into (28), we have
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δF [u] = −
∫

Ω0

u1 · divS +
∫

∂Ω0\S0

u1 · Sn +
∫

S0

u1 · (Sn − divsS)

+
∫

∂S0

u1 · Sv −
∫

∂Ωt
0

t0 · u1. (34)

It is known that ∂Ωu
0 ∪ ∂Ωt

0 = ∂Ω0 and ∂Ωu
0 ∩ ∂Ωt

0 = ∅ as well as S0 ⊂ ∂Ω0.
However, the relation between S0 and ∂Ωt

0 (or ∂Ωu
0 ) is not given before. To simplify

the discussion, we regard S0 as a subset of ∂Ωt
0, that is, S0 ⊂ ∂Ωt

0. Thus, the last
integral in (34) can be reformulated as

−
∫

∂Ωt
0

t0 · u1 = −
∫

∂Ωt
0\S0

t0 · u1 −
∫

S0

t0 · u1. (35)

Also, with u1 = 0 on ∂Ωu
0 in (25), the second integral in (34) reduces to

∫
∂Ω0\S0

u1 · Sn =
∫

∂Ωt
0\S0

u1 · Sn. (36)

Using (35) and (36), the first variation finally becomes

δF [u] = −
∫

Ω0

u1 · divS +
∫

∂Ωt
0\S0

u1 · (Sn − t0) +
∫

S0

u1 · (Sn − divsS − t0)

+
∫

∂S0

u1 · Sv. (37)

Since the variation u1 in (37) is arbitrary, the vanishing of the first variation
δF [u] = 0 and the fundamental lemma of calculus of variations (Courant and
Hilbert 1953) leads us to the following set of governing equations

divS = 0 in Ω0,

Sn = t0 on ∂Ωt
0 \ S0,

Sn − divsS = t0, Sn = 0 on S0,

Sv = 0 on ∂S0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(38)

Here we rewrite the equation Sn = 0 on S0 (see the statement above (30)) in (38).
Equation (38), together with (21)1 and (29), forms a well-defined boundary value
problem. For the readers convenience, we reiterate the notations here: S denotes the
first Piola-Kirchhoff stress, S the first surface Piola-Kirchhoff stress, n the outward
unit normal to the surface, v the outward unit normal to the boundary curve, and t0
the applied dead load.
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3.3 Constitutive Equations and Elastic Stress Tensors

In (29), we have defined the first Piola-Kirchhoff bulk stress tensor S and the first
Piola-Kirchhoff surface stress tensor S through the partial derivative with respect
to the displacement gradient ∇u. By the chain rule, these two first Piola-Kirchhoff
stresses can also be defined as

S = ∂Ψ̄ (F )

∂F
and S = ∂Γ̄s(F )

∂F
, (39)

where F = ∇(x + u) = I + ∇u and

Ψ̄ (F ) = Ψ (∇u)
∣∣∇u=F−I and Γ̄s(F ) = Γs(∇u)

∣∣∇u=F−I. (40)

By the frame indifference in the strain energy functions (Gurtin et al. 2010) and
the polar decomposition F = RU , R ∈ Orth+ = {all rotations}, and U is the right
stretch tensor, we have

Ψ̄ (F ) = Ψ̄ (RT F ) = Ψ̄ (RT RU) = Ψ̄ (U),

Γ̄s(F ) = Γ̄s(R
T F ) = Γ̄s(R

T RU) = Γ̄s(U).
(41)

Using the relation U =
√

UT U =
√

UT RT RU =
√

F T F = √
C, we can

introduce strain energy functions Ψ̂ (C) and Γ̂s(C), such that

Ψ̂ (C) = Ψ̄ (
√

C) = Ψ̄ (U) = Ψ̄ (F ),

Γ̂s(C) = Γ̄s(
√

C) = Γ̄s(U) = Γ̄s(F ).
(42)

Similarly, by the definition of the Green strain tensor E = 1
2 (C − I), we can

express strain energy functions Ψ ∗(E) and Γs
∗(E), such that

Ψ ∗(E) = Ψ̂ (C) = Ψ̄ (U) = Ψ̄ (F ),

Γs
∗(E) = Γ̂s(C) = Γ̄s(U) = Γ̄s(F ).

(43)

In contrast to the two first Piola-Kirchhoff stresses (39), by (43) and E = 1
2 (C −

I), the two second Piola-Kirchhoff stresses are defined as

T = 2
∂Ψ̂ (C)

∂C
= ∂Ψ ∗(E)

∂E
and T = 2

∂Γ̂s(C)

∂C
= ∂Γs

∗(E)

∂E
. (44)

By (39), (43), (44), and the chain rule, the relations between the first P-K stresses
(S,S) and the second P-K stresses (T ,T) are (P-K is the abbreviation for the Piola-
Kirchhoff stress.)
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S = FT and S = FT. (45)

The relations between the first P-K stresses (S,S) and the Cauchy stresses
(σ , σ s) are

S = (det F )σF−T and S = (det F )σ sF−T . (46)

3.4 Linearized Bulk and Surface Stresses and Constitutive Choice

A peculiarity of considering surface effects is the perceived presence of residual
stresses – the surface tension-like quantity in solids is precisely a residual stress
state. This becomes evident if we linearize the energy functions around a reference
configuration which is not stress-free.

For small deformation, the Cauchy-Green tensor C = F T F = (I + ∇u)T (I +
∇u) can be reduced to C = I+∇u+∇uT , |∇u| � 1, by dropping the higher-order
terms o(|∇u|). Thus, the strain tensor E = 1

2 (C − I) in (44) may be approximated
by the infinitesimal strain:

E = 1

2
(∇u + ∇uT ), (47)

Using Taylor series, (44)1 gives

T = ∂Ψ ∗(E)

∂E

∣∣∣∣
E=0

+ ∂2Ψ ∗(E)

∂E2

∣∣∣∣
E=0

· E + o(|E|), (48)

where o(|E|) denotes the higher-order terms.
Since the reference configuration is assumed to be stress-free for the bulk portion

of the material, it follows that ∂Ψ ∗(E)
∂E

∣∣
E=0 = 0 and the elasticity tensor is

C := ∂2Ψ ∗(E)

∂E2

∣∣∣∣
E=0

. (49)

Thus, as usual, the linearized small-deformation stress-strain relation of bulk
portion of the material is

T = CE. (50)

Consider the first P-K stresses S = FT in (45)1 and the Cauchy stresses σ =
(det F )−1SF T in (46)1 of bulk materials at small deformations. By the relation (50)
and the infinitesimal strain (47), it is easy to show that to a first order

S = T = σ . (51)
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The equivalence of the first P-K, the second P-K, and the Cauchy stresses in (51),
however, does not hold for surface stresses due to the existence of the residual stress.
This is rather important to note. In linearized elasticity (without residual stresses),
it is usual to ignore the distinction between the various stress measures. For surface
elasticity, even in the linearized case, we must take cognizance of the different
interpretations of the various stress measures. The first P-K stress measure is the
most useful since it represents the force per unit referential area and is likely to
be the quantity controlled in traction-controlled experiments (as opposed to Cauchy
traction).

From previous works (see Eq. (40) in the work of Gurtin et al. 1998 and Eq. (7.9)
in the work of Gurtin and Murdoch 1975b), we can show that the second P-K surface
stress T in (44)2 and the first P-K surface stress S in (45)2 can be recast as

T = ∂Γs
∗(Es)

∂Es
, S = (I + P∇su)T, (52)

where Es , in contrast to the infinitesimal strain (47), is the infinitesimal surface
strain

Es = PEP = 1

2
[P∇su + (P∇su)T ]. (53)

Using the Taylor series for (52)1, for small deformation, we have

T(Es) = ∂Γs
∗(Es)

∂Es

∣∣∣∣
Es=0

+ ∂2Γs
∗(Es)

∂E2
s

∣∣∣∣
Es=0

· Es + o(|Es |). (54)

With an appropriate choice of an elastic constitutive law (i.e., specification of Γs
∗

and Ψ ∗), we now have all the governing equations and can solve the pertinent
boundary value problems of physical interest. Analytical solutions are rather hard to
come by for the anisotropic case, and by far, most problems solved in the literature
have been restricted to isotropic continua.

For isotropic linear elastic materials incorporating the residual surface stress, we
have (Gurtin and Murdoch 1975a,b)

τ0I := ∂Γs
∗(Es)

∂Es

∣∣∣∣
Es=0

, Cs := ∂2Γs
∗(Es)

∂E2
s

∣∣∣∣
Es=0

, (55)

where τ0I is the residual stress and the surface elasticity tensor Cs gives

Cs[Es] = λ0tr(Es)I + 2μ0Es (56)

with surface elastic moduli λ0 and μ0.
By (55) and (56), a general linearized constitutive law for isotropic linear

materials in terms of the second P-K surface stress T in (54) can be written as
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T(Es) = τ0I + λ0tr(Es)I + 2μ0Es . (57)

For solving actual boundary value problems (including the ones we present later
in this chapter), we will need the first P-K stress tensor. To do so, we take cognizance
of the relation between the two P-K stresses. By (52)2 and (57), the first P-K surface
stress S becomes

S(∇su) = τ0I + λ0tr(Es)I + 2μ0Es + τ0∇su, (58)

where the higher-order terms |(∇su)tr(Es)| and |(∇su)Es | are omitted. Here and
henceforth, the difference between ∇su and P∇su is not specified for simplicity.

By (46)2 and a similar argument as (52), the Cauchy surface stress σ s and the
first P-K stress S in (58) have the relation

σ s = [det(I + ∇su)]−1
S(I + ∇su)T . (59)

For small deformation, [det(I + ∇su)]−1 = 1 − tr(∇su) = 1 − tr(Es); thus, σ s

in (59) can be recast as

σ s = [1 − tr(Es)][τ0I + λ0tr(Es)I + 2μ0Es + τ0∇su](I + ∇su
T )

= [τ0I + λ0tr(Es)I + 2μ0Es + τ0∇su − τ0tr(Es)I](I + ∇su
T )

= τ0I + λ0tr(Es)I + 2μ0Es + τ0∇su − τ0tr(Es)I + τ0∇su
T

= τ0I + (λ0 − τ0)tr(Es)I + 2μ0Es + τ0(∇su + ∇su
T )

(60)

by dropping the higher-order terms related to the product between these terms
tr(Es), Es , ∇su, and ∇su

T .
Using the definition of surface strain in (53) and (60) finally becomes

σ s = τ0I+ (λ0 − τ0)tr(Es)I+ 2(μ0 + τ0)Es = τ0I+λs tr(Es)I+ 2μsEs . (61)

Here

λs = λ0 − τ0 and μs = μ0 + τ0 (62)

are the Lamé constants of the surface.
In contrast to the equivalence (51), S in (58), T in (57), and σ s in (61) are not

equivalent if the residual stress is nonzero τ0 �= 0, namely:

S �= T �= σ s for τ0 �= 0. (63)

In the literature, sometimes (including the work by the corresponding author),
the distinction between the various forms of the surface stress has often been blurred.
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For the most part, this does not lead to qualitative differences, but care must be
exercised when solving surface elasticity problem to ascertain which precise stress
measure and constitutive parameters are being deployed. As self-evident, there is a
distinction between (λs, μs) and (λ0, μ0).

If we set the surface Lamé constants (λs, μs) to zero in (62), we obtain λ0 = τ0
and μ0 = −τ0, and then the result in (58) is what is often called the surface tension
(in the reference configuration) (Gurtin and Murdoch 1975a)

S = τ0[1 + tr(Es)]I − 2τ0Es + τ0∇su. (64)

This is to be contrasted with the expression in the current configuration where
the Cauchy surface tension from (61) by setting (λs, μs) to zero will be in the form
of isotropic “pressure”

σ s = τ0I. (65)

4 Illustrative Examples

In this section we choose three illustrative examples that highlight both the use of the
surface elasticity theory as well as provide insights into the physical consequences
of surface energy at the nanoscale. These examples are inspired from Altenbach
et al. (2013), Murdoch (2005), and Sharma et al. (2003) although, to be consistent
with our own style (presented in the preceding sections), we have modified them
slightly. Germane to the study of analytical study of nanostructures, we also note
parallel developments in the literature on the so-called surface Cauchy-Born rule
and numerical methods (Park et al. 2006).

4.1 Young’s Modulus of a Nano-rod Considering Surface Effects

This example addresses how the elastic modulus of an isotropic nano-rod alters
due to the influence of surface energy. This particular problem is inspired from the
work by Altenbach et al. (2013) although there are some minor differences in our
solution. Consider a circular cylinder (rod) with radius R0 whose axis coincides
with the ez direction. To interrogate the elastic response, we assume that the rod is
under uniaxial tension and the coordinate system used for this problem is cylindrical
coordinate with basis (er , eθ , ez) as shown in Fig. 4.

For isotropic elastic materials without surface effects, the uniaxial tension
along the axial direction admits a homogeneous deformation. To simplify the
discussion, we assume the deformation here incorporating the surface effect is also
homogeneous, namely:

u = Arer + Bzez, (66)
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Fig. 4 A schematic of a
nano-rod under a uniaxial
tension. Surface effects are
only considered on the radial
surface ∂Ω0, and edge effects
are ignored. Force F is
exerted in the ez direction

where A and B are constants. The assumed displacement (66) can be used for either
small or finite deformation.

For the radial surface with outward unit normal n = er , the projection tensor is
P = eθ ⊗ eθ + ez ⊗ ez. By (66), the displacement gradient ∇u, the strain tensor
E = 1

2 (∇u+∇uT ) for small deformation, the surface displacement gradient ∇su =
(∇u)P, and the surface strain tensor Es = PEP for small deformation become

∇u = E = A(er ⊗ er + eθ ⊗ eθ ) + Bez ⊗ ez,

∇su = Es = Aeθ ⊗ eθ + Bez ⊗ ez.
(67)

By the constitutive law of isotropic linear materials and (67)1, we have

S = λtr(E)I + 2μE :=
⎡
⎣

Srr 0 0
0 Sθθ 0
0 0 Szz

⎤
⎦ , (68a)

where λ and μ are Lamé constants of bulk materials and

Srr = Sθθ = λ(2A + B) + 2μA, Szz = λ(2A + B) + 2μB. (68b)

In addition, by the constitutive law (58) and by setting τ0 = 0, together with
(67)2, we have

S = λ0tr(Es)I + 2μ0Es :=
[
Sθθ 0
0 Szz

]
, (69a)

where

Sθθ = λ0(A + B) + 2μ0A, Szz = λ0(A + B) + 2μ0B. (69b)

Using the Young-Laplace equation (38)3, without external load t0 = 0 on the
radial surface (r = R0) with unit normal er , we have the equality Ser = divsS. By
(68a), the identity (16), and S

T er = 0 in (38)3, we can obtain



Surface Energy and Nanoscale Mechanics 19

Srr = er · Ser = er · divsS = −S · ∇ser . (70)

Since ∇ser = (∇er )P =
(

1
r
eθ ⊗ eθ

)
(eθ ⊗ eθ + ez ⊗ ez) = 1

r
eθ ⊗ eθ , (70)

implies

Srr = −Sθθ

R0
. (71)

By (68b), (69b), and (71) be written as

λ(2A + B) + 2μA = −λ0(A + B) + 2μ0A

R0
, (72)

which gives the ratio

A

B
= − λ + λ0/R0

2λ + 2μ + (λ0 + 2μ0)/R0
. (73)

By (67) and (68b), the Young modulus for uniaxial tension is

Erod = Szz

Ezz

= λ(2A + B) + 2μB

B
= λ

(
1 + 2

A

B

)
+ 2μ, (74)

where the ratio A/B is given by (73). By the equilibrium of the rod in the axial
direction (Altenbach et al. 2013), the effective Young’s modulus can be defined as
Eeff = (Szz + 2

R0
Szz)/Ezz = λ

(
1 + 2 A

B

) + 2μ + 2
R0

[λ0(1 + A
B

) + 2μ0].
This simple example makes clear that the effective or apparent elastic response of

nanostructures becomes size-dependent as a result of surface energy effects and that
with smaller R0, the effective elastic modulus may become significantly different
than its bulk value. We remark that if surface effects are ignored, that is, λ0 = μ0 =
0 and the ratio A/B = −λ/(2λ + 2μ) in (73), then the Young modulus in (74)
becomes Erod = μ(3λ + 2μ)/(λ + μ)–which is essentially the relation between
bulk Young’s modulus and the Lamé constants.

4.2 Influence of Surface Effects on the Thermoelastic State of a
Ball

We consider the equilibrium state of a spherical ball (radius R0) in vacuum
undergoing thermal expansion – following Murdoch (2005). Only traction boundary
conditions need to be considered here; hence, (21)1 can be omitted. Moreover, (38)2
and (38)4 are also omitted since the entire surface of the sphere is considered, that
is, S0 = ∂Ω0 = ∂Ωt

0.
We now proceed to solve the reduced boundary value problem that consists of

(38)1, (38)3, and (29). As before, we assume the ball material to be isotropic and
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that the ball is in its natural, stress-free state in the reference configuration. Hence,
we assume constitutive equations for the bulk and surface as follows:

S = λbtr(E)I + 2μbE − αΔT I, (75)

S = τ0I + (λs + τ0)tr(Es)I + 2(μs − τ0)Es + τ0(∇su) − α0ΔT I, (76)

where S is the first P-K stress field in the reference configuration, λb and μb are
Lamé constants for the ball material, ΔT is the temperature difference, α is the
coefficient of thermal expansion, and α0 is the thermal expansion coefficient of the
surface.

In this example we use spherical coordinates with basis (er , eθ , eφ) with the
origin at the center of the ball. For the surface with outward unit normal n = er , the
projection tensor is P = eθ ⊗ eθ + eφ ⊗ eφ . Given that the problem is spherically
symmetric, the form of the displacement field can be assumed to be

u = ur(r)er . (77)

Then the displacement gradient, the strain tensor, the surface gradient of the
displacement, and the surface strain in (75) and (76) can be written, similar to (67),
as

∇u = E = ∂ur

∂r
er ⊗ er + ur

r
(eθ ⊗ eθ + eφ ⊗ eφ),

∇su = Es = ur

r
(eθ ⊗ eθ + eφ ⊗ eφ).

(78)

From (78), (75), and (76), we have

S = λb

(
∂ur

∂r
+ 2ur

r

)
I + 2μb

(
∂ur

∂r
er ⊗ er + ur

r
(eθ ⊗ eθ + eφ ⊗ eφ)

)
− αΔT I,

S = τ0I + λs

(
2ur

r

)
I + (2μs + τ0)

(ur

r

)
(eθ ⊗ eθ + eφ ⊗ eφ) − α0ΔT I.

(79)
Substituting (79)1 into the equilibrium equation (38)1, together with the diver-

gence of a tensor in spherical coordinates, we obtain

r2 ∂2ur

∂r2 + 2r
∂ur

∂r
− 2ur = 0. (80)

The general solution of (80) is ur(r) = Ar +Br−2, where A and B are constants
to be determined by the boundary conditions. The displacement at the origin must
vanish for the field to be bounded, i.e., and consequently B = 0 and then

ur(r) = Ar. (81)
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Thus, the stresses (79) are reduced to

S = [A(3λb +2μb)−αΔT ]I, S = [τ0 +A(2λs +2μs + τ0)−α0ΔT ]I. (82)

We must now deploy the boundary condition in (38)3. Since the ball surface is
traction-free, that is, t0 = 0, (38)3 can be reduced to Ser = divsS. By (82), we can
further simplify this to

Srr = er · Ser = er · divsS at r = R0. (83)

By using the identity (16), (82)2, (38)3, and (14), we finally obtain

Srr = er · divsS = −S · ∇ser = −S ·
{

1

r
(eθ ⊗ eθ + eφ ⊗ eφ)

}
= −2Sθθ

R0
. (84)

By (82) and (84), we have

3λbA + 2μbA − αΔT = − 2

R0
{τ0(1 + A) + 2A(λs + μs) − α0ΔT }. (85)

By defining the surface modulus Ks as

Ks = 2(λs + μs), (86)

(85) yields the solution of A in the displacement (81), namely:

A = −2τ0/R0

(3λb + 2μb + 2Ks/R0 + 2τ0/R0)
+ (α + 2α0/R0)ΔT

(3λb + 2μb + 2Ks/R0 + 2τ0/R0)
.

(87)
This example, as can be noted from (87), nicely shows how a positive surface

residual stress τ0 may hinder the thermal expansion in a size-dependent manner.

4.3 Effect of Residual Stress of Surfaces on Elastic State of
Spherical Inclusion

The solution of an embedded inclusion in another material is a canonical problem
in classical solid mechanics (known as Eshelby’s inclusion problem) and has been
applied to situations as diverse as phase transformation to effective properties of
composites. Accordingly, in this section, we consider the problem of spherical
inclusion with radius R0 but incorporating surface effects. The solution here is
a slight modification of the work by Sharma et al. (2003). We use spherical
coordinates with basis (er , eθ , eφ) with the origin at the center of the sphere in this
problem. We assume that a far field stress is exerted on the matrix as follows:
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Srr

∣∣
r→∞ = S∞. (88)

To make analytical progress, we further stipulate that the inclusion, the matrix,
and the interface are isotropic and that the inclusion is in its natural state in the
reference configuration. The constitutive equations for the bulk are as follows:

S = λν tr(E)I + 2μνE, (89)

where S is the first Piola-Kirchhoff stress and λν and μν are Lamé constants of the
material corresponding to either the inclusion(I) or the matrix(M). For the surface
we use the constitutive equation defined in (58), i.e.:

S = τ0I + (λs + τ0)tr(Es)I + 2(μs − τ0)Es + τ0(∇su). (90)

Like the previous example, this problem also has spherical symmetry and
accordingly the displacement vector is of the form

u = ur(r)er . (91)

Therefore, the displacement gradient and the strain are similar to (78). Hence,
the stress in the bulk and on the surface stress can be expressed as

S = λb

(
∂ur

∂r
+ 2ur

r

)
I + 2μb

(
∂ur

∂r
er ⊗ er + ur

r
(eθ ⊗ eθ + eφ ⊗ eφ)

)
,

S = τ0I + λs

(
2ur

r

)
I + (2μs + τ0)

(ur

r

)
(eθ ⊗ eθ + eφ ⊗ eφ).

(92)
We have used (38) in spherical coordinates. The boundary value problem that

consists of (38)1–(38)3 becomes

r2 ∂2ur

∂r2 + 2r
∂ur

∂r
− 2ur = 0 r � R0,

r2 ∂2ur

∂r2
+ 2r

∂ur

∂r
− 2ur = 0 r > R0,

�Srr� = 2Sθθ

r
r = R0,

Srr

∣∣
r→∞ = S∞ r → ∞.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(93)

The “�·�” denotes the jump across the interface. Similar to (80), the general
solutions of (93)1 and (93)2 are

ur(r) =
{

Ar + B r−2 r � R0,

C r + D r−2 r > R0,
(94)
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where A, B, C, and D are constant. Since ur(0) = 0, B = 0. Substituting (94)2 into
(92)1, the far field (93)4 gives C = S∞/(3KM), where KM = λM + 2μM/3. Using
the continuity of the displacement at the interface, that is, �ur� = 0 at r = R0, and
the Young-Laplace equation (93)3, we obtain two algebraic equations of A and D.
The routine calculation is not shown here and we just list the final results. Thus, the
displacement (94) is obtained as

u(r) =

⎧⎪⎨
⎪⎩

αr r � R0,

E∞r + (α − E∞)
R3

0

r2 r > R0,

(95)

where E∞ = S∞/(3KM), α := (3KM + 4μM)E∞ − 2τ0/R0

4μM + 3KI + 2Ks/R0 + 2τ0/R0
, KI = λI +

2μI/3 is the inclusion bulk modulus, and Ks = 2(λs +μs) is defined as the surface
modulus.

In particular, by setting λI = 0 and μI = 0, we obtain the much-studied case of
a void in a solid. The displacement (95)2 for this special case is

u(r) = E∞r + β
R3

0

r2
r > R0, (96)

where β := (3KM + 4μM)E∞ − 2τ0/R0

4μM + 2Ks/R0 + 2τ0/R0
−E∞ and E∞ = S∞/(3KM). Thus, the

bulk stress (92)1 in the matrix (r > R0) is

S = S∞I + 2μMβ
R3

0

r3 (I − 3er ⊗ er ) . (97)

If there is no far stress field, S∞ = E∞ = 0, the bulk stress S becomes

S0 = 2μM

( −2τ0/R0

4μM + 2Ks/R0 + 2τ0/R0

)
R3

0

r3 (I − 3er ⊗ er ) . (98)

Assume a nonzero far stress field, S∞ �= 0. By (97) and (98), we may then define
the stress concentration factor at r → R0 as

S.C. = Sθθ − S0
θθ

S∞

∣∣∣∣
r→R0

= 1 + 1

2

(
1 − 2 (Ks + τ0) /(3KMR0)

1 + Ks/(2μMR0) + τ0/(2μMR0)

)
.

(99)
In the absence of surface energy effects, i.e., τ0 = Ks = 0 in (99), we obtain a

stress concentration factor of 1.5 which is the well-known classical elasticity result
for a spherical void under hydrostatic stress. We have graphically plotted the results
in Fig. 5 that illustrates the qualitative behavior of how stress concentration on a
void alters due to size and the surface elasticity modulus (Interestingly, the surface
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Fig. 5 Stress concentration on a spherical void under hydrostatic stress is plotted with respect
to the size of the void for three different surface modulus Ks . For coarser void size, the stress
concentration asymptotically approaches the bulk value of 3/2. For the plot, we have chosen
properties of Aluminum as bulk, with (λM = 62.29 GPa, μM = 36.71 GPa). The surface
properties are the following: Case (a) considering positive surface modulus Ks = 2(λs + μs) by
using λs = 6.842 N/m, μs = −0.3755 N/m, and τ0 = 0; Case (b) without considering surface
effects; and Ks = 0; Case (c) considering negative surface modulus Ks = 2(λs + μs) by using
λs = 3.48912 N/m, μs = −6.2178 N/m, and τ0 = 0. (The surface and material properties are
taken from Miller and Shenoy 2000; Cammarata et al. 2000)

elasticity modulus can have negative values as shown via atomistic simulations by
Miller and Shenoy 2000.).

5 Perspectives on Future Research

Despite extensive work on surface elasticity, some aspects of this field are still
somewhat understudied and represent avenues for future exploration. We briefly
articulate them below:
• As well-motivated by Steigmann and Ogden (1999, 1997), under certain cir-

cumstances, the dependence of surface energy on curvature must be accounted
for. This was recently explored by Fried and Todres (2005), who examined
the effect of the curvature-dependent surface energy on the wrinkling of thin
films, and Chhapadia et al. (2011) who (using both atomistics and a continuum
approach) explained certain anomalies in the bending behavior of nanostructures.
However, due to the complexity of the Steigmann-Ogden curvature-dependent
surface elasticity, relatively few works exist on this topic.

• Intriguing recent experiments by Style and co-workers (Style et al. 2013, 2017)
on capillarity and liquid inclusions in soft solids have revealed that the pertinent
size effects due to surface effects may be observed at micron length scales (in
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contrast to the nanoscale for hard materials). This represents an important future
direction and requires the use of nonlinear surface elasticity due to the need
to account for the inevitable large deformations in soft matter. Arguably, the
study of capillarity in soft matter will also require the development and use of
numerical methods cf. Henann and Bertoldi (2014).

• Finally, the literature on coupling of capillarity with electrical and magnetic fields
is quite sparse.
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